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This talk will include: 

n  Experiment overview 

n  Radiographs and data extraction (edge on) 

n  Modeling (simulation) 

n  Radiographs (orthogonal direction) 

n  Modeling (theory) 

F W Doss et al Phys. Plasmas 20, 012707 (2013) 
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The reshock & shear campaigns investigate 
compressible, variable density mixing  

n  Experimentally investigate mixing physics in high-energy-density 
regimes. 

n  Provide validation data for LANL’s BHR turbulence model. 

n  Experiments conducted at LLE’s Omega laser facility. 
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Experiment parameters 

n  This experiment achieves 
Re ~ 4*10^5 (delta-delta-dot 
definition)  / 3*10^6 (Delta-V definition) 

n  Zhou’s transition time (delta-delta-dot) 
~ 10 ns. 

n  Mach number 2 flow on each side. (70 
km/sec, 10 - 20 eV material) 

n  Shear rate ~ 3 ns-1 (GHz). 

n  Post-shock density ratio > 5. 
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§  Compressibility and variable density effects are important here. 
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Counter-propagating shear experiment 

§  The main idea: Dense plugs block half of each side’s drive. 

60 mg/cc CH 

60 mg/cc CH 

Al plate ~ 5 kJ ~ 5 kJ 
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Features of the counter-propagating geometry 

n  Higher shear (~ 70 km/sec on each side = ~ 140 km/sec net difference). 

n  Higher convective Mach number (2). 

n  Symmetry: pressure is balanced between two sides, so no net motion or 
expansion of the layer due to pressure gradients. 

n  After the initial wave transients die down, past a certain point any growth of 
the layer is due only to the shear instability. 
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Simulations ran in the RAGE hydrocode 

n  Mix widths were extracted from the simulations using the same metric 
as the experimental radiographs. 

4 ns 10 ns 
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Radiographs are taken edge-on and orthogonal 
(March 2012 campaign) 

0 ns 6 ns 8 ns 

10 ns 12 ns 14 ns 
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Lineouts are taken from radiographs at 
observed shock crossing location (July 2012 Campaign) 

6 ns 7 ns 10 ns 

12 ns 14 ns 16 ns 
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Lineouts extracted from radiographs give Al layer width 
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n  4.3 keV Sc line well 
absorbed by the Al 
layer. 

n  Everything else in the 
system is pretty much 
transparent. 

n  Lineout taken across 
tube center. 
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Simulations with and without turbulence 
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 data, 95% error bars

n  RAGE clean calculations 
miss the data. 

n  RAGE with BHR can 
reproduce the data, 
using a length scale 
parameter comparable to 
layer thickness, rather 
than layer roughness. 

n  Preheat selected to 
match 6 ns point. 

n  Dust-up appears in the 
simulation for long 
enough length scales s. 

n  s from 20s to low 30s 
can match all mix widths 
except the dust-up point. 

n  After 14 ns, conditions 
are very insensitive to 
the initial BHR 
parameters (but 
sensitive to having BHR 
on). 
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Current work on implementing streak radiography 
(November 2012 Campaign) 

n  Streak radiography can capture more time evolution per shot, but loses 
information off the centerline. 
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n  Simulated streak (whole experiment) 

n  Data (two shots),  
interpretation and comparison underway 

Time -> 6 9 12 15 ns 
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Shock compression Shear expansion 
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Data in the other direction sees nonlinear structures, 
observes transition to turbulence 
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10 ns 12 ns 14 ns 
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The visible striations at 10 ns compare to a most unstable 
mode in linear stability analysis 

n  The equations are moderately unpleasant. 

n  In the limit of d’->0, recover the “vortex stratum” solved by 
Lord Rayleigh in The Theory of Sound. (Only three terms survive.) 
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n  In  the further limit of d ->0, get classic Kelvin-

Helmholtz. (One term survives.) 

n  Most unstable wavelength is around 2π(d-d’). 
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Using values from simulation in linear theory, predicts 
most unstable wavelength 

n  Using values from the 
simulation at 8 ns into the 
linear theory predicts a 
most unstable wavelength 
of 55 microns. 

n  Data from FT transform of 
orthogonal view = 57 +- 7 
microns. 

 

Density
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Limits imposed by geometry and drive 

n  The counter-propagating geometry takes half a shock transit time  to create 
the pure shear region, which then persists for one shock transit time, at 
which point the shock has bounced back to the center. 

n  In the Omega experiments, 7 ns to create shear region, and at 18+ ns the 
reflections terminate the experiment. 

n  Radial edge effects are becoming noticeable at similar times. 
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NIF scaled experiment 

n  These issues are addressed by a NIF sized variant of the experiment: 
•  Enormous target volume moves edge effects and experiment-ending reflections 

further away in time from affecting the shear centerline. 
•  Long pulse indirectly drive from halfraums to support the shocks, stave off 

rarefactions. 
•  Streak radiography to collect time history with fewer shots. 
•  The NIF scaled experiment will push well past the transition regime. 
 
To scale target designs: 

Slide 17 

Omega NIF 
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Conclusions 

n  RAGE calculations with BHR can match mix-width data generated in the 
counter-propagating shear experiment. 

n  The data is sensitive to the initial turbulent length scale parameter in 
BHR, the mix widths to a window of about 15 microns, the dust-up to a 
window of a few microns. 

n  The turbulent length scales which match the experiment are set by the 
initial width of the layer, rather than the initial roughness of the layer. 

n  Orthogonal radiography captures strong nonlinear evolution and 
transition to increasingly fine, diffuse structures. 

n  A NIF experiment with supported shocks could extend to later mixing 
times, longer shear regions, thicker plates, etc. and explore 
substantially more parameter space. 
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Extra slides 

Slide 19 
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Simulations (especially dust-up) show sensitivity to the 
length scale s.  
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n  Other runs, 
compared to 
the data. 

n  10 – 30 
microns can 
fit all standard 
points 
(excluding 
dust-up 
height). 
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Energy deposition tuned for shock location 
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§  Shock locations 
adequately predicted by 
simulation.  Better job on 
the intact side. 

§  Energy tuned to get shock 
crossing time near 
experiment (6 ns sim 
location is between the two 
experimental times). 

§  Shocks not readily visible 
on 12 ns intact side (in 
process of bounce). 


